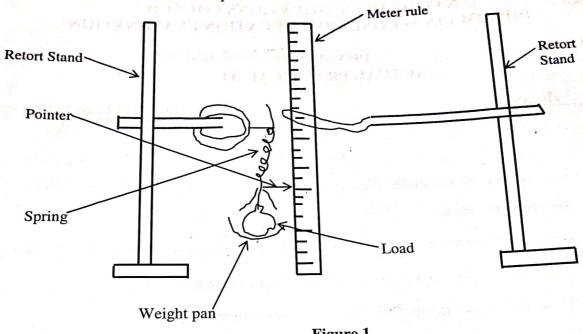
THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL DIPLOMA IN SECONDARY EDUCATION EXAMINATION

731/2A

PHYSICS 2A (ACTUAL PRACTICAL A)

Time: 3 Hours

Thursday, 10th May 2012 a.m.


Instructions

- 1. This paper consists of three (3) questions.
- 2. Answer all questions.
- 3. Question number one carries 40 marks, question number two and three carries 30 marks each.
- 4. Mathematical tables and non-programmable calculators may be used.
- 5. Cellular phones are **not** allowed in the examination room.
- 6. Write your **Examination Number** on every page of your answer booklet(s).

The aim of this experiment is to determine the force constant of the spring k.

Apparatus:

You are provided with a weight pan, meter rule, pointer, spiral spring, slotted weights, stop watch and two retort stands with clamps.

Figure 1

Procedures:

- (a) Set up the apparatus provided for this experiment as shown in Figure 1 above.
- (b) Record the scale reading s_0 .
- (c) Add 50 gm on the weight pan and record the new scale reading s.
- (d) Calculate the extension $(e = s s_0)$ caused by the weight.
- (e) Repeat with different load of 100 gm, 150 gm, 200 gm, 250 gm, until 600 gm.

Questions:

- (i) Tabulate your results.
- (ii) Sketch a well labeled diagram of the experiment.
- (iii) Plot a graph of load against extension.
- (iv) Find the gradient G of your graph.
- (v) What is the physical meaning of the gradient?
- (vi) State four sources of errors and suggest the ways to minimize.

Page 2 of 4

You are provided with a thermometer, a calorimeter, a stirrer, a stopwatch/stop clock, beaker and a liquid labeled B.

Procedures:

- (a) Using a beaker, take about 200cm³ of the liquid B and heat until it boils.
- (b) Quickly transfer the boiling liquid B from a beaker to the calorimeter provided. Record the temperature and immediately start the watch.
- (c) While stirring the liquid and constantly fanning with the piece of paper provided, note and record the temperature of the liquid as it cools at intervals of 2 minutes. Continue with reading the temperature for 20 minutes.

Questions:

(i) Tabulate your results for θ and t, where θ is the temperature in °C and t is the time in minutes.

_									.1195	Evaluate r for one	(IV)
Ľ	Time t (Minute)						1.			State the source of	daily i
Ľ	Femperature θ °C	٠.	ì	•	•	1. 1	•	: '			

- (ii) Draw a well labeled diagram of the experiment.
- (iii) Plot a graph of θ against t.
- (iv) Determine the rate of cooling of liquid B at $70^{\circ}C_{1}$ $60^{\circ}C_{1}$ $50^{\circ}C_{2}$
- (v) Mention four sources of error in this experiment.
- 3. The aim of this experiment is to determine the electromotive force (E) and internal resistance (r) of a cell.

Procedures:

- (a) Connect the circuit as shown in Figure 2 above.
- (b) Put $R=1\Omega$ and quickly read the value i on the ammeter.
- (c) Repeat the procedure in 3(a) above for values of $R=2\Omega$, 3Ω , 4Ω , 5Ω and 6Ω .

Page 3 of 4

Questions:

will invested

(i) Tabulate your results and complete the following table

Resistance $R(\Omega)$	Current i(A)	$\frac{1}{i}(\mathbf{A}^{-1})$
1		
2		
3	ert di liberio de 1808 il	g II to appet the
4		
5		
6	of the late of the second of the second	charles !

- (ii) Plot the graph R against $\frac{1}{i}$.
 - (iii) Using the graph and the equation $R = \frac{E}{i} r$. Find the value of E.
 - (iv) Suggest how E and r may be evaluated from your graph.
 - (v) Evaluate E for one cell.
 - (vi) Evaluate r for one cell.

e (E) and internal toxidanc

(vii) State the source of error and suggest one way of minimizing it.